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A model of pion Compton scattering is formulated on the basis of Regge poles and scale
invariance. The structure functions for e+ + e 7l~+ hadrons are derived from those for
electroproduction by using crossing symmetry, and the cross section for e+e annihilation is
calculated by assuming factorization of the Regge residues. The predicted cross section is
consistent with recent storage-ring experimental results. The proton and pion electromag-
netic form factors are then calculated from finite-energy sum rules and good agreement with
the data is obtained. It is found that the e+e annihilation cross section is not inconsistent
with a pion form factor which decreases rapidly with increasing momentum transfer squared.

I. INTRODUCTION

Much interest is focused on the e'e annihilation
experiment being performed at the Frascati'
storage ring, and on future storage-ring experi-
ments planned elsewhere. Preliminary data on
multiparticle production in e'e inelastic scatter-
ing have already been obtained and the results in-
dicate that the production cross section falls off
more slowly than anticipated from calculations
based on the vector-dominance model. ' A previous
calculation' of the cross section for e++ e -p
+ hadrons, based on a Regge-pole model with scale
invariance at large values of q' (the photon mass
squared), predicted that cr behaved as o = 1/q' for

~ OQ ~
2

In the following, we shall develop a model of
pion Compton scattering by extending our previous
work. ' The residues of the exchanged Regge poles
P and P' are calculated by assuming that the res-
idues factorize into products of particle-particle
Regge-pole couplings so that they can be calculated
from the residues of other known processes. By
means of unitarity, we can then calculate the
structure functions for electroproduction, and by
using s-u crossing symmetry obtain the structure
functions for the e+e pair-annihilation process by
an analytic continuation, since this process is
dominated by the same t-channel exchanges as the
electroproduction process. By adjusting one free
parameter, we then predict the cross section for
e+ +e m'+ hadrons and find agreement with the
preliminary Frascati data. '

The structure functions for the processes
e-+P- e + hadrons and e +w'- m'+ hadrons are
then used in a finite-energy sum rule (FESR)
which connects the elastic electromagnetic form
factors of the proton and pion to an integral over

these structure functions in the "scale-invariance"
region. Good agreement with the data for both the
proton and pion form factors is obtained in the re-
gion of energy for which the Regge-pole model is
applicable. The pion form factor is predicted to
fall off as (-q') '~' asymptotically, where -q' is
the momentum transfer squared; this shows that
a slowly decreasing cross section for e'e- annihila-
tion is consistent with a decreasing pion form
factor, which corresponds to a composite pion.

The paper has six sections. In Sec. II, we pre-
sent the kinematics and amplitudes used to de-
scribe pion Compton scattering. In Sec. III, we
define the annihilation structure functions. In
Sec. IV, we give our model for the Compton am-
plitude, and in Sec. V, we describe the predictions
of the model for the annihilation process and for
the pion and proton form factors, and compare
these to the experimental data.

II. PION COMPTON SCATTERING

In Fig. 1, the kinematics of the process m'+y- w'+y for photons of mass v q' are described.
The forward amplitude for this process is given by

T'(v& q') = 4w aim,"*e,"

d4&eiqx p g& Jem & Jem O P

where e~ and e~ are the polarization vectors of the
incoming and outgoing photons, respectively.
Moreover, v=P q/y, is the laboratory energy of
the incoming photon, p. is the pion mass, J„' is
the hadron electromagnetic current, and o, =e'/4w.
By charge-conjugation invariance, the amplitudes
for n'y and m y elastic scattering are equal.

Let us define the tensor
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It follows that the discontinuity of T,"(v, q') satis-
fies

ImT,"(v,q') = ImT,"(-v, q'). (2.8)

p'

77 g

FIG. 1. Definition of kinematical quantities for ym

elas)ic scat tering.

d4& e&e «g & P. gem & Jem 0

+ polynomials in q. (2.2)

In the t channel only C=+1 Regge poles are ex-
changed, and because 6 parity forbids A, exchange,
only P and P' exchanges need be considered as
dominant with e~ = 1 and 0.~ = —,'.

III. ELECTROPRODUCTION AND e' e

PAIR ANNIHILA'IION

We shall now discuss inelastic electron scat-
tering e +w'- e + hadrons and electron-positron
pair annihilation e'+ e -m'+ hadrons. In Fig. 2,
we describe the inelastic scattering. In the
laboratory frame

v=p ~ q/V. =E E'-

q"T*' =q" T*' =0
PV JLV

(2.3)

This tensor satisfies the condition of gauge in-
variance

(3.1)

is the photon energy, where E and E' are the
electron initial and final energies, respectively.
The invariant mass of the hadrons produced is

vV -=W= (p, '+q'+2p, v)

We can write the covariant tensor T*„', in terms
of two I.orentz-invariant amplitudes T,' and T,' as
follows:

and in the present metric (p =po' -p2= p~)

q2= -4EE' sin'(~8), (3.2)

1 ~~ 1Pqp ~ q
p p, q q
-Tpv- —

2 pp- g qp pv- 2 qv T

—g — "," Tx v, q
q

(2.4)

Forward w'y scattering can be described in
terms of a Sommerfeld-Watson representation of
the t -channel process y+y- m+ +m continued
from the region E &4' y q &0 to the region t~0
and q'&0 with v= p ~ q/p, physical, and where
t = (P —P')' = (q -q')' is the momentum transfer
squared. The representation for T, is given for
large v and f,= 0 by the real analytic function

T,"(v, q'}=-wg(2n, +I) '. ' ' [v~~+(-v)~~j,
Pg' q', o') )

5

ImT

where

(3.3)

x (2w)45(q+ p p„).
The tensor 8'„'„can be written as

(3.4)

where 8 is the laboratory scattering angle of the
electron. The threshold for elastic scattering is
W= p. or q'=-2p, v.

By using unitarity, we can relate the forward
scattering amplitude for massive photons scatter-
ing off pions to the structure functions for deep-
inelastic electroproduction

(2.5}
where we have summed over the Regge poles with
intercepts e, . The discontinuity of T,' above the
cut for positive v is given by

~ q~ Ip. —
q'

PV q3 (3.5)

(2.5)

—ImT;(v, q') =Q(2o., +1)P;(v, q')(-v) "& . (2.V)

1—ImT,'(v, q') =Q(2 o., + 1)P,'(q', a, )v "& .

If we define T;(v, q') as the physical amplitude for
the u-channel reaction, i.e., m y scattering, for
negative v, we have, taking the discontinuity be-
low the cut and using crossing symmetry,

where W,' are the structure functions satisfying

ImT,"(v, q') = xW,'(v, q'). (3.6)

We shall assume that the "scale-invariance"
limit, in the sense of Bjorken, 4 holds in a non-
trivial way for the pion structure functions W,'.
This assumption is motivated by an extension of
Bjorken's derivation of "scale invariance" of the
structure functions describing the inelastic
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k = (E', k')

k = (E,7)
e

PtQN

FIG. 2. Kinematics of the reaction 8 + m ~8 + hadrons.

process e +P- e + hadrons to the case of elec-
trons scattering off any hadron. We cannot, how-
ever, prove that the limit of "scale invariance"
is a nontrivial one. Specifically, we assume that
in the limit -q'-~, v-~, &u=-2@v/q' fixed, the
8", have the nonzero limits

FIG. 3. Kinematics of the annihilation process
8 + 8 ~x + hadronse

where W,"(-v, q') has been continued in q' to q' &0.
We note that in the case of yp scattering, (3.11)

becomes

W', (v, q')= W', ( v, q') (3.12)

because of Fermi-Dirac statistics.
The annihilation cross section in the barycentric

frame of the colliding-beam experiment is given by

lim sp, W,"(v,q') =E,'((u),

11m vW2 ( v~ q ) =E2 ((d) .
v~~; 1'fixed

(3.7)

d 0' 2Q P V

dQdE, q4 ~q
v'

2l1 v q vW,'(v, q') . ,
V 2P,

The annihilation structure functions TV„', are de-
fined by

—,W„'.=—„:~«I J;-(0) I )(.l~:-(0)I0)

x (2g)464(q —p —p„)

=—
2 p„- —

g q„p.—
2 q. Wg(»q )

(3.18)

2pW,'= &u(vW,') (s.i4)

where g, is the energy of the final pion, and 8 is
the angle of the pion momentum with respect to the
axis determined by the incident e' and e beams.

If we assume that the transverse- and longitu-
dinal-photon matrix elements are equal, then

ap-
q

(3.8)

where the kinematics are described in Fig. 3;
note that q' &0 and -1«u & 2y, /-q; also the state
n includes at least one pion.

We define W,'(v, q') as the continuation of
Wf(v, q') to negative v; from (2.8) we see

2pW, = a&(vW,').
The cross section (8.18) then becomes

d(x 2Q pv
dQdE, q' ~q2 v'

(8.18)

W& (-v, q~) = W& (v, q2), q~ &0. (8.9)
2

&&2p, W,'(v, q') 1 ——1 ——,sin'8 . (3.18)

W„".(q, -p) = W„".(q, p).

Hence, using (3.9), we have

W&'(v, q') = W,"(-v, q'), (s.ii)

The annihilation process involves a further con-
tinuation to q' & O. This continuation cannot be
shown generally to be valid, as the amplitudes are
not analytic in q'; it is, however, true i.n specific
models, of which ours is an example. If it is
possible to perform the continuation, then by
applying the reduction formalism to the pion in
(3.8) and (3.4), we can show

IV. MODEL FOR PION COMPTON AMPLITUDE

AND 8' -e ANNIHILATION

Our model takes the form

T,"(v,q', t) = -m oP -1

2p, v "&'" 1"(n, (0))
+~* t~()(2 ) ~ o)

(4.1)

where for all v the signature factor is
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-$ m'a3(t )

~(t) =
1'(a( (t)) sinwa( (t)

' (4 2)

This choice of signature factor corresponds to
approaching the cut from above for v &0 and from
below for v&0, giving in both cases the imaginary
part of the physical amplitude for the s-channel
(w'y) and the u-.channel (w-y} processes, respec-
tively. The factor I'((w( (t)) cancels the pole at
o,. =0, and g and A, are constants. The index i runs
over the dominant t-channel Regge poles, i.e., the
P and the P'.

We now determine the residues of the P and the
P' using factorization. We write the asymptotic
total cross section for particles A and B as a sum
over t-channel Regge poles e, , i.e.,

and using X =0.567 GeV (see below), we obtain

P'=0.18,

P~ =0.15 GeV '~'. (4.9)

The transverse cross section for yN scattering
obtained in our earlier work is given in the Regge
region by.

4@2
(( (yp, yn)=

/
w0'"(v, q )

4m'(y

v+q /2M (() +(()

z("(,."..)"(;,( '

o (AB)=pp;(AB)s "(~" '. (4 3) For sufficiently large v, fixed q', we have

Factorization tells us that the residues p, (AB)
factorize into two couplings:

P((AB) =r;(AA)r;(BB)

Thus (i=P, P')

P; (rN) = r, (rr)y, (NN),

p((rw) = r((rr}r((ww),

P((wN) = y((NN)y, (ww)

Hence it follows that

P, (»)P((wN}P(r' =
'P, (NN)

(4.4)

(4 5)

(4.11)

The transverse cross section for yn scattering in
the same limit is

(4.12)

If we assume that the factorization relation
(4.5} also holds for massive photons, then for
fixed q' and v-~ we get from (4.5), (4.11), and
(4.12)

2p, (-q +)(. ) ' 2M(-q +m0 )
( P, (NN)'

p)( 1 0(((0) (
p, (yw) =4w'o —',

A. 2 p, A.

PP, n 1 n&(0) -i
p((rt(, rn} =4w'(w '.

SZQ SZ0

(4.6)

The values for P~ and P~ for yN scattering were
determined in our previous work on nucleon
Compton scattering to be

PN 03
P~N =0.13 QeV

(4.7)

The residues Pv I, (wN) and PJ, ~ (NN) have been
determined by Barger, Olsson, and Reeder' to be

The residues P,"'~ used in the model for T,'~ are
related to the residues P;(yw) and P;(yN) as follows
(q'=o):

(4.13)

for i = P, P' . From this result, we infer that for
v- ~, the q' dependence on both sides of (4.13) is
the same and therefore A, =mo. The constant mo
has been determined in our previous calculation
of the total yN cross sections and we found that
ma= 0.567 GeV gave a satisfactory fit.

The structure functions W,', which describe the
process e'+ e - w'+ hadrons, will be obtained by
calculating the discontinuity of the amplitude T;,
which is the analytic continuation of the amplitude
T,' into the region v&0 and q2&0. Provided that
this continuation of the model is valid, the an-
nihilation structure functions for -1& (() & 2)(,/-q
are given by

Pv(wN) =20.1 mb,

Pv, (wN) = 19.8 mb GeV,

P~(NN} = 35.6 mb,

P~.(NN) =44.3 mb GeV

(4.8}

(4.14)

in this notation. From (4.5}, (4.6), (4.7), and (4.8), We choose the threshold behavior to be ((d —1)~
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as &u-1. The relation (3.11) and the positivity of

W," and W,
" force P to be even, so that W,' does

not change sign in going through e = 1. The choice
p = 2 corresponds to a pion form factor which be-
haves as F,(q') = (-q') '~' as -q' -~, which is
consistent with the presently available data.

It should be mentioned at this juncture that the
model we have is not simply a Regge-pole model
which has a scale-invariant limit. The Regge
limit corresponds to -q' fixed, v- ~. However,
the model is valid for all

~ v) &2 GeV; thus, its
region of validity includes, for example, the
limits v large, q' large but co & 12, which is cer-
tainly not characterized by Regge behavior in
either v or ~, if we consider the SLAC data. '
For this reason, Regge behavior in v does not
necessarily occur when cos 8, » 1, i.e., v» v-q2,
but rather when v&3 GeV and ~&10. When we
calculate the annihilation structure functions, we
may have ) cos 8, ~

- 1 and the problem is how to
continue the Regge part of the model. The con-
tinuation P„(z)+ P„(-z) is not valid for varying
photon mass; in particular, it is not correct for
)q2) small. Thus, we have chosen simply to use

the form (v+ c) + (e —v)", with e small even in the
region where (cos8, ~-1. In fact, cos8, = v/~q~

=-u&)q~/2p. Further, -1 &&u & -2p, /)q( whereby
for the annihilation region 1 &cos8, & Iql/2p; so
in the scale-invariant limit we do not expect the
region where cos8, -1 to be very heavily weighted
in the total cross section because the cross section
(3.16) is zero at cos8, =1.

We note that fixed poles, for example at J=O,
may be present in the amplitude.

We are now in a position to calculate the total
cross section for e +e -w'+ hadrons. In Fig. 4,
we show the predicted curve for g'=0.065 com-
pared with the data from the Frascati storage-
ring experiment' and we see that our calculated
cross section compares reasonably well with the
rough data. However, the events corresponding
to inelastic leptonic and electromagnetic processes,
such as e'+e —p, '+p. + "third particle, " have
not been subtracted out of the experimental cross
section, and there is some ambiguity about the
discrimination against events corresponding to
two-photon exchanges, which may be sizeable. e

Furthermore, two-body final states, such as
e' +e - m+ +m, are excluded in the experiment;
these, however, amount to about 10% of the mea-
sured cross section. The quantity plotted is
actually ko(4), where

1 o(2)
5.2 o(4} '

and o(n) is the cross section for producing n

charged particles + possible neutrals. We may

interpret ko (4) as a rough approximation to the
multihadron production cross section, although it
may differ from the latter considerably (-70%);
therefore, we interpret our agreement with the
data in a qualitative sense.

It is interesting that our predicted cross section
does not fall off rapidly as a function of q', in
agreement with the preliminary data. As q'- ~,
the total cross section will eventually decrease as
o -1/q', as expected on the basis of a scale-in-
variant model. Of course, this asymptotic be-
havior sets in after the scale-invariance breaking
effects have disappeared in the model in the limit

~ 00 ~
2

We observe that for the annihilation process

or
'P4v&q /2p

-1 ~& (0 & -2p, /Vqz .

(4.15)

(4.16)

The threshold for two-pion production is q' =4p2
so that v= 2p. = 280 MeV, and therefore a Regge
model is not expected to be valid for this process.
However, the model may be expected to describe
adequately production above the four-pion thresh-
old.

V. FINITE-ENERGY SUM RULE AND FORM

FACTORS

(IO 3 Cm~)

6—
I-
LalZ 5—
Vl
Lal

O
4

O
UJ 3
CQ

Z

2

+ I—

b
I

l.6
I I

I.l I

l.e
2E, GeV

I
I.9

I
2.0

FIG. 4. Plot ofko(e +e,4 charged particles+ neu-
trals) vs center-of-mass energy 2E . The solid line is'y

our fit; the data are from Ref. 1. For an explanation of
k, see text.

Let us now consider the finite-energy sum rule
proposed by Bloom and Gilman' which for yp
scattering takes the form

v 2Nvp /(-q 2)
2 dvvW2(vpq )= d(u viz ((u}

q2 j2N 1

(-q' large), (5.1}
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vW2~ (nucleon} = 2Mv[G(q')]'5(s -M')

= q'[G(q')]'5(s -M'),
where

(5.2)

[G( .)], [Gs(q')1'+ (-q'/4M')[G, (q')1'
(5 4)1+ ( q'/4M')

where on the right-hand side we have assumed
that vS', is scale-invariant, i.e., depends only
upon u&= -2Mv/q . For ys scattering, we have

qPfff{ /(-e )
dv vW3 (v, q') =

~

de vW,"(&u)
-& a-a2/2p

(-q' large) .(5.2)

These sum rules imply that for v& v~ „vW, (&u}

acts as a smooth function which averages vW, (v, q')
in the sense of finite-energy sum rules. Bloom
and Gilman' then extend (5.1) and (5.2) by making
the very strong assumption of locality; i.e., in the
vicinity of a resonance [including the nucleon and
pion poles, in (5.1) and (5.2), respectively],
vW, (&o) is still a good average of the resonance
bump which appears in vW, (v, q'). The contribu-
tion of the nucleon form factors to vS'~2 is

Similarly, the contribution of the pion form factor
to vS", is

vW,'(pion) = 2@v[E„(q')]'5(s —p')

= -q'[E„(q')]'5(s —p') . (5.5)

Thus, with the assumption of locality, the sum
rules (5.1) and (5.2) become

i+ (w, '-~3)/(-. 2)

[&(q )] = vW', (&u)d~
1

(5.6)

(5.7)
i+(s'„-p2)/( -e 2)

[s', (e') I"f .w;(~)d~.
1

The upper limits are somewhat arbitrary, but
in general are chosen so as to include most of the
effect of the hadron pole, and not too much contri-
bution from higher resonances. We are, after all,
approximating an integral over a 5 function [on the
left-hand side of (5.1}and (5.2)] by an integral
over a smooth function over some finite range (on
the right-hand side). We shall assume that the
"scaling" relations between the nucleon form
factors are valid, ' i.e.,

1.2—

~ S LA C (1968)
o Jonssens et al. (1966)
~ Bar tel et al. {{970}
~ Berger etaL{{968}
~ Bartel et ol. (1967)
~ Goitein et al. {{967}
+ Albrecht et ol. (1966)

a
E

0.9—
CL

l$

~ 5 q ~ P

0.8-

0.7

0.6 I

2
I I I

IQ
—q (GeV/c)

I

20
I I

50

FIG. 5. Proton form factor G~z(q )/p&G~& vs momentum transfer squared, -q2. G~&=-$/(1-q2/0. 71)2.
The solid line is our. fit; the data are from Ref. 9.
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Gp( .
)

G&(q') Gv(q')

Gg (q') =0,
(5.8)

~ AKFRLOF ET AL.
0 MISTRETTA ET AL. (ZAGURY)

x MISTRETTA ET AL. (ADLER)
& BROWN ET AL. (BERENDS)

where p.~
= 2.79, p.„=-1.91. If we assume that the

scaling relations (5.8) hold, then (5.4) becomes F~(q2)
0.6-

(5.9) 0.4-

and in the limit -q' —~, it follows that G(q')
= G~P (q')

If we differentiate (5.7) with respect to q', we
get

I I I I I I I I

0 0.2 0.4 0.6 0.8 1.0 I.2 I.4 I.6
—q~ (Gev/c)

, [E„(q')]'=vW,",1+

W'- ' -q'

where

In the limit q'-0, v fixed (&u-~), we find

(5.10)

(5.11)

FIG. 6. Pion form factorE~(q2) vs momentum trans-
fer squared, -q2. The solid line is our fit; the data are
from Ref. 11.

see that the fit to the data for -q'& 2 GeV' is good.
Of course, the 1/q' behavior for large -q' is built
in. The predicted pion form factor E,( q)2for

W, '=1.29 GeV' is shown in Fig. 6, and compared
with the available data. " For the electroproduc-
tion process, we have in (5.6)

3(W,'- p.
'

(r, ) =lim '~ vW,'(v, q').
q2-0

(5.12) W~ -M
1 ~& g ~& 1+

q2
(5.14)

Naturally, in taking this limit we must include the
q' dependence in our model for vW,' in the right-
hand side of the sum rule (5.7); thus in the model
we are able to extrapolate to q' =0 for large v.
However, we have

lim —,vW,'(v, q') S 0
q2~0 q

and the sum rule therefore leads to the result
(r,) =m. We also observe from (5.1) and (5.2)
that as q'-0, the range of integration runs over
values of v which are below the region for which
the Regge-pole model is valid. Therefore, . the
sum rules are not reliable for small values of -q2
when we describe the structure functions by our
model. But we can use (5.6) and (5.7), together
with (5.9), to predict the elastic form factors of
the pion and the nucleon at larger values of -q'.
In Fig. 5, we show the predicted form-factor ratio
GvP/p, p G, p, where

1
emP (1 qR/0 71)2 ) (5.13)

and compare it to the data. ' ' We have included
the scale-invariance-breaking term in our evalua-
tion of the right-hand side of (5.6), since our model
only has exact scale invariance as -q'- ~, v- ~.
We have used the parameters in our model for
vW~ derived previously, ' with W~2 = 2.2 QeV'. We

and this gives

2M 2M
(5.15)

Thus, a value of -q'= 2 GeV' corresponds to the
energy range 1 & v &1.8 GeV, wherein we expect
our Regge model to be valid, albeit marginally at
the lower limit. Hence, we present a fit only for
-q' & 2 QeV'. For the pion form factor, the range

in v is
2 -q +W„—p.

2 2 2
~& v~(

2p, 2p,
(5.16)

and for -q =0.2 GeV this corresponds to the
range 0.7 & v &4.2 GeV. Also, in this case the
Regge-pole model for vW2, in conjunction with the
sum rule (5.7), gives a reasonable 6t to the data
even in the non-Regge region (dashed line in
Fig. 6).

We have shown that a slow decrease of the e'e
annihilation cross section is consistent with a
pion form factor that falls off fairly rapidly for
space like q', which behavior suggests that the
pion is not a pointlike structure, but appears to
have structure comparable to the nucleon. There-
fore, one can say that a flat e+e annihilation
cross section is not inconsistent with a rapidly
decreasing pion form factor.
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The violation of the ~bI [=2 rule in the K» decays is discussed in detail. The effect of
broken symmetry on weak hadron currents is taken into account by applying the hypothesis
of asymptotic SU(3) and SU(2) symmetries. No assumption is made about the mechanism
of the SU(3) and SU(2) breakings except that both of them belong to an octet. The main effect
turns out to be described essentially by the effect of the particle mixings which take place
among the &, g, and g (958) mesons. It is shown that one of the solutions for these
mixing parameters, which is compatible with the SU(3) and SU(2) mass splittings between
the members of the pseudoscalar nonet, gives rise to a rather sizable violation of the
~
b,i )=2 rule in the branching ratios, and in particular, the sign of the violation is opposite

to the one obtained by the usual consideration of the electromagnetic correction involving
charged leptons. The solution predicts R~=I'(XL, ~ e v)/2I'(X+ ~ e+v) = 0.94 and also
R~ = R&, where R& is the corresponding branching ratio for the muon decays. This seems
to be consistent with the latest compilation of world data. A remark is also added on the
semileptonic baryon processes in broken SU(3) and SU(2) symmetries.

I. INTRODUCTION

Usually, weak semileptonic processes are as-
sumed to take place through the weak hadronic
currents which obey the

~
b,I ~= —,

' rule. However,
in the presence of an SU(2)-breaking interaction
this selection rule is an approximate one. The
electromagnetic interaction need not be the only
cause of this violation of the

~
b,I

~

= —', rule. There

is some room left for suspecting the existence of
a nonelectromagnetic isospin-violating interaction.

One of the most promising places to study the
violation of the

~
aI

~

= —,
' rule is the comparison of

the K,, and X~» decays. Starting from a phenome-
nological local weak interaction of the form

I ~[(P„+P,) f,(q')+(Pr-P„) f (q')]u„y (I+y, )u,

(I)


